Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 1, Pages 57–60 (Mi vmumm4380)  

Short notes

Characterization of self-similar processes with stationary increments

A. V. Savitskii

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The paper is focused on the study of self-similar random processes with a parameter $H$ with additional property of stationarity of first-order increments. A general characterization of such processes is described using terms of correlation theory. The spectral density of increments of such processes is calculated. Based on different approaches to definition of fractional Brownian motion, the existence of integral representation for increments of all considered processes is proved.
Key words: random processes, covariance function, spectral density, fractional Brownian motion, self-similar processes, stationary increments.
Received: 13.11.2019
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 1, Pages 37–40
DOI: https://doi.org/10.3103/S002713222101006X
Bibliographic databases:
Document Type: Article
UDC: 519.216.22
Language: Russian
Citation: A. V. Savitskii, “Characterization of self-similar processes with stationary increments”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1, 57–60; Moscow University Mathematics Bulletin, 76:1 (2021), 37–40
Citation in format AMSBIB
\Bibitem{Sav21}
\by A.~V.~Savitskii
\paper Characterization of self-similar processes with stationary increments
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 1
\pages 57--60
\mathnet{http://mi.mathnet.ru/vmumm4380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4288432}
\zmath{https://zbmath.org/?q=an:1469.60112}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 1
\pages 37--40
\crossref{https://doi.org/10.3103/S002713222101006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671348300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109633914}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4380
  • https://www.mathnet.ru/eng/vmumm/y2021/i1/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:63
    Full-text PDF :16
    References:25
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024