Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 1, Pages 10–16 (Mi vmumm4372)  

Mathematics

Correlation approach to studying dependent discrete probability spaces

A. V. Lebedev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The well-known problem of the absence of independent events in some discrete probability spaces (finite or countable) is considered. It is proposed to study such spaces using the minimum absolute value of the correlation coefficient of event indicators (in the case of a countable space, the infimum is taken). Examples of the probability space with a prime number of equally possible outcomes, a finite space with weights and irrationality, a geometric space with a prime number of outcomes and a countable space with probabilities given by the sum of three geometric progressions are considered.
Key words: independence, dependence, random event, discrete probability space, correlation coefficient, prime number.
Received: 21.02.2020
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 1, Pages 9–15
DOI: https://doi.org/10.3103/S0027132221010046
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. V. Lebedev, “Correlation approach to studying dependent discrete probability spaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1, 10–16; Moscow University Mathematics Bulletin, 76:1 (2021), 9–15
Citation in format AMSBIB
\Bibitem{Leb21}
\by A.~V.~Lebedev
\paper Correlation approach to studying dependent discrete probability spaces
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 1
\pages 10--16
\mathnet{http://mi.mathnet.ru/vmumm4372}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4288427}
\zmath{https://zbmath.org/?q=an:1469.60011}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 1
\pages 9--15
\crossref{https://doi.org/10.3103/S0027132221010046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671348300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109654547}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4372
  • https://www.mathnet.ru/eng/vmumm/y2021/i1/p10
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :14
    References:30
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024