Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 1, Pages 3–10 (Mi vmumm4371)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

On properties of solutions of the Cauchy problem for two-dimensional transport equations on a rotating plane

O. S. Rozanova, O. V. Uspenskaya

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (455 kB) Citations (3)
References:
Abstract: The limiting case of the system of equations of two-dimensional gas dynamics in the presence of the Coriolis force, which can be obtained under the assumption of small pressure, is considered. With this approach, the equation for the velocity vector (transport equation) is split off from the system and can be solved separately. An explicit asymptotic representation of a smooth solution to transport equations is obtained with the use of the method of stochastic perturbation along characteristics and the process of formation of singularities of solution is analysed on a specific example. It is concluded that the presence of the Coriolis force prevents formation of singularities.
Key words: transport equation, formation of singularities, representation of solution.
Received: 11.09.2019
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 1, Pages 1–8
DOI: https://doi.org/10.3103/S0027132221010058
Bibliographic databases:
Document Type: Article
UDC: 517.956.35
Language: Russian
Citation: O. S. Rozanova, O. V. Uspenskaya, “On properties of solutions of the Cauchy problem for two-dimensional transport equations on a rotating plane”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1, 3–10; Moscow University Mathematics Bulletin, 76:1 (2021), 1–8
Citation in format AMSBIB
\Bibitem{RozUsp21}
\by O.~S.~Rozanova, O.~V.~Uspenskaya
\paper On properties of solutions of the Cauchy problem for two-dimensional transport equations on a rotating plane
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/vmumm4371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4288426}
\zmath{https://zbmath.org/?q=an:7392386}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 1
\pages 1--8
\crossref{https://doi.org/10.3103/S0027132221010058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671348300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109645546}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4371
  • https://www.mathnet.ru/eng/vmumm/y2021/i1/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :20
    References:24
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024