Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 6, Pages 66–68 (Mi vmumm4370)  

Short notes

The advanced convergence method in the problem on torsional oscillations of a circular disc inhomogeneous in thickness

L. D. Akulenkoa, D. V. Georgievskiib, S. V. Nesterova

a Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: On the basis of the advanced convergence method developed by the authors, torsional vibrations of a circular disk which is fixed on a shaft are investigated numerically and analytically. Thickness of the disk depends on the radius. The internal boundary of the disk is fixed on a shaft while the external one is free of loadings. The first few eigenvalue frequencies of torsional oscillations are obtained for various ratio of the external disk radius and the internal one as well as for various mass distributions.
Key words: torsional vibrations, circular disk, the Sturm–Liouville problem, advanced convergence method.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00016à
Received: 28.02.2020
English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2020, Volume 75, Issue 6, Pages 180–182
DOI: https://doi.org/10.3103/S0027133020060023
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: L. D. Akulenko, D. V. Georgievskii, S. V. Nesterov, “The advanced convergence method in the problem on torsional oscillations of a circular disc inhomogeneous in thickness”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 6, 66–68; Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 75:6 (2020), 180–182
Citation in format AMSBIB
\Bibitem{AkuGeoNes20}
\by L.~D.~Akulenko, D.~V.~Georgievskii, S.~V.~Nesterov
\paper The advanced convergence method in the problem on torsional oscillations of a circular disc inhomogeneous in thickness
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 6
\pages 66--68
\mathnet{http://mi.mathnet.ru/vmumm4370}
\zmath{https://zbmath.org/?q=an:7394810}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin
\yr 2020
\vol 75
\issue 6
\pages 180--182
\crossref{https://doi.org/10.3103/S0027133020060023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000637503000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103682016}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4370
  • https://www.mathnet.ru/eng/vmumm/y2020/i6/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :14
    References:23
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024