Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 6, Pages 40–48 (Mi vmumm4364)  

Mechanics

Bifurcation analysis of a system of three connected bodies in a homogeneous gravitational field

A. V. Karapetyan, M. P. Chaplygina

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The problem of motion of three connected rigid bodies in a homogeneous gravity force field (a generalization of the problem of motion of a gyroscope with gimbal suspension) is discussed. All steady motions of the system, their stability conditions and branching are found. The results are presented in the form of bifurcational diagrams.
Key words: steady motions, stability, bifurcationcal diagrams.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00140
Received: 19.06.2019
English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2020, Volume 75, Issue 6, Pages 160–169
DOI: https://doi.org/10.3103/S0027133020060035
Bibliographic databases:
Document Type: Article
UDC: 531.36
Language: Russian
Citation: A. V. Karapetyan, M. P. Chaplygina, “Bifurcation analysis of a system of three connected bodies in a homogeneous gravitational field”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 6, 40–48; Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 75:6 (2020), 160–169
Citation in format AMSBIB
\Bibitem{KarCha20}
\by A.~V.~Karapetyan, M.~P.~Chaplygina
\paper Bifurcation analysis of a system of three connected bodies in a homogeneous gravitational field
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 6
\pages 40--48
\mathnet{http://mi.mathnet.ru/vmumm4364}
\zmath{https://zbmath.org/?q=an:7394807}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin
\yr 2020
\vol 75
\issue 6
\pages 160--169
\crossref{https://doi.org/10.3103/S0027133020060035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000637503000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85104036462}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4364
  • https://www.mathnet.ru/eng/vmumm/y2020/i6/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :19
    References:20
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024