Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 5, Pages 3–8 (Mi vmumm4348)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings

V. V. Nemiro

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (328 kB) Citations (3)
References:
Abstract: Let $R$ be a linearly ordered noncommutative ring with $1/2$ and $G_n(R)$ be the subsemigroup of the group $\mathrm{GL}_n(R)$ consisting of all matrices with nonnegative elements. Endomorphisms of this group are described in the papaer for $n \geqslant 3$.
Key words: noncommutative ring, associative ring, ordered ring, semigroup of invertible nonnegative matrices, endomorphisms.
Received: 17.07.2019
English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2020, Volume 75, Issue 5, Pages 181–187
DOI: https://doi.org/10.3103/S0027132220050058
Bibliographic databases:
Document Type: Article
UDC: 512.534.7 + 512.555
Language: Russian
Citation: V. V. Nemiro, “Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 5, 3–8; Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 75:5 (2020), 181–187
Citation in format AMSBIB
\Bibitem{Nem20}
\by V.~V.~Nemiro
\paper Endomorphisms of semigroups of invertible nonnegative matrices over ordered associative rings
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 5
\pages 3--8
\mathnet{http://mi.mathnet.ru/vmumm4348}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4234351}
\zmath{https://zbmath.org/?q=an:07351999}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin
\yr 2020
\vol 75
\issue 5
\pages 181--187
\crossref{https://doi.org/10.3103/S0027132220050058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000631796800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85102925222}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4348
  • https://www.mathnet.ru/eng/vmumm/y2020/i5/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024