|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 4, Pages 29–37
(Mi vmumm4338)
|
|
|
|
Mechanics
Dynamic deformation of a thin plastic layer between converging rigid cylinders
R. R. Shabaykin Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
On the basis of asymptotic analysis with a natural small geometric parameter $\alpha$ without any static or kinematic hypotheses, the dynamic solutions of the Prandtl analog for the case of a cylindrical layer, including the terms with $\alpha^{-1}$ and $\alpha^{0}$ for various cylinder configurations, are obtained and analyzed.
Key words:
ideal rigid-plastic body, Prandtl's problem, quasistatics, compression, spreading, asymptotic expansions, axisymmetric problem, Euler's number, dynamics.
Received: 15.10.2018
Citation:
R. R. Shabaykin, “Dynamic deformation of a thin plastic layer between converging rigid cylinders”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4, 29–37; Moscow University Mechanics Bulletin, 75:4 (2020), 87–95
Linking options:
https://www.mathnet.ru/eng/vmumm4338 https://www.mathnet.ru/eng/vmumm/y2020/i4/p29
|
Statistics & downloads: |
Abstract page: | 98 | Full-text PDF : | 20 | References: | 29 | First page: | 6 |
|