Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 4, Pages 12–22 (Mi vmumm4336)  

This article is cited in 15 scientific papers (total in 15 papers)

Mathematics

Isoenergy manifolds of integrable billiard books

I. S. Kharcheva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider a class of integrable Hamiltonian systems with two degrees of freedom — billiard books, which are generalizations of billiards bounded by arcs of confocal quadrics. The first issue arising in the study of billiards is concerned with the topology of the phase space and the isoenergy manifold. We prove that the phase space and the isoenergy manifold of any billiard book are actually piecewise manifolds.
Key words: integrable Hamiltonian system, billiard, isoenergy manifold.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6399.2018.1
Received: 19.06.2019
English version:
Moscow University Mathematics Bulletin, 2020, Volume 75, Issue 4, Pages 149–160
DOI: https://doi.org/10.3103/S0027132220040026
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: I. S. Kharcheva, “Isoenergy manifolds of integrable billiard books”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 4, 12–22; Moscow University Mathematics Bulletin, 75:4 (2020), 149–160
Citation in format AMSBIB
\Bibitem{Kha20}
\by I.~S.~Kharcheva
\paper Isoenergy manifolds of integrable billiard books
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 4
\pages 12--22
\mathnet{http://mi.mathnet.ru/vmumm4336}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4234346}
\zmath{https://zbmath.org/?q=an:1473.37070}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2020
\vol 75
\issue 4
\pages 149--160
\crossref{https://doi.org/10.3103/S0027132220040026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000631796600002}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4336
  • https://www.mathnet.ru/eng/vmumm/y2020/i4/p12
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:180
    Full-text PDF :31
    References:34
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024