Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 2, Pages 15–22 (Mi vmumm4311)  

This article is cited in 4 scientific papers (total in 4 papers)

Mathematics

Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate

A. V. Davydov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (251 kB) Citations (4)
References:
Abstract: This paper is focused on the study of the spectrum of the symbol of the equation describing the motion of a viscoelastic plate in a flow of fluid or gas. The lower bound of critical flow rate at which the motion becomes unstable is obtained using methods of operator analysis.
Key words: integrodifferential equation, spectral analysis, operator function, flatter of viscoelastic plate.
Received: 12.04.2019
English version:
Moscow University Mathematics Bulletin, 2020, Volume 75, Issue 2, Pages 65–71
DOI: https://doi.org/10.3103/S0027132220020035
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: A. V. Davydov, “Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 2, 15–22; Moscow University Mathematics Bulletin, 75:2 (2020), 65–71
Citation in format AMSBIB
\Bibitem{Dav20}
\by A.~V.~Davydov
\paper Spectral analysis of integrodifferential operators arising in the study of flutter of a viscoelastic plate
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 2
\pages 15--22
\mathnet{http://mi.mathnet.ru/vmumm4311}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4136860}
\zmath{https://zbmath.org/?q=an:1445.35045}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2020
\vol 75
\issue 2
\pages 65--71
\crossref{https://doi.org/10.3103/S0027132220020035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000555972000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089077420}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4311
  • https://www.mathnet.ru/eng/vmumm/y2020/i2/p15
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :28
    References:35
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024