Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 1, Pages 3–17 (Mi vmumm4296)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics $L_{p_1 p_2}$

M. K. Potapova, B. V. Simonovb

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Volgograd State Technical University
Full-text PDF (513 kB) Citations (3)
References:
Abstract: Interrelation between partial moduli of smoothness of positive order considered in metrics of $L_{p_1 \infty}, L_{\infty p_2}$, and $L_{p_1 p_2}$ is studied.
Key words: inequality, metrics, partial moduli of smoothness of positive order.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00457
Received: 09.01.2019
English version:
Moscow University Mathematics Bulletin, 2020, Volume 75, Issue 1, Pages 1–15
DOI: https://doi.org/10.3103/S0027132220010015
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. K. Potapov, B. V. Simonov, “Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics $L_{p_1 p_2}$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 1, 3–17; Moscow University Mathematics Bulletin, 75:1 (2020), 1–15
Citation in format AMSBIB
\Bibitem{PotSim20}
\by M.~K.~Potapov, B.~V.~Simonov
\paper Estimates of partial smoothness moduli in metrics $L_{p_1 \infty}$ and $L_{\infty p_2}$ by partial smoothness moduli in the metrics
$L_{p_1 p_2}$
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/vmumm4296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4127502}
\zmath{https://zbmath.org/?q=an:1446.26003}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2020
\vol 75
\issue 1
\pages 1--15
\crossref{https://doi.org/10.3103/S0027132220010015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000548650100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087985644}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4296
  • https://www.mathnet.ru/eng/vmumm/y2020/i1/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:263
    Full-text PDF :72
    References:41
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024