Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 4, Pages 39–41 (Mi vmumm4257)  

Mathematics

Splitting of function algebras on symplectic manifolds

V. Hoffman
Abstract: We derive some sufficient conditions for Lie algebras of functions on symplectic manifolds to split into the ideal of locally constant functions and an ideal isomorphic о the Lie algebra оf Hamiltonian vector fields of certain functions. A splitting of this form is produced m the case of algebras on compact manifolds.
Received: 04.12.1981
Bibliographic databases:
Document Type: Article
UDC: 513.944
Language: Russian
Citation: V. Hoffman, “Splitting of function algebras on symplectic manifolds”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 4, 39–41
Citation in format AMSBIB
\Bibitem{Hof82}
\by V.~Hoffman
\paper Splitting of function algebras on symplectic manifolds
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1982
\issue 4
\pages 39--41
\mathnet{http://mi.mathnet.ru/vmumm4257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0671886}
\zmath{https://zbmath.org/?q=an:0504.58019}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4257
  • https://www.mathnet.ru/eng/vmumm/y1982/i4/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024