Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 3, Pages 57–61 (Mi vmumm4238)  

Mathematics

Stabilization of the trivial solution for an $n$-th order stationary linear differential equation

V. Klajnig
Abstract: In this paper we give a criterion for a linear equation of any arbitrary order with constant coefficients to have the following property: the trivial solution of the equation may be stabilized by a periodic perturbation which is small in average and is equal to zero on the most part of the period. An algorithm for construction such perturbation is given.
Received: 14.07.1981
Bibliographic databases:
Document Type: Article
UDC: 517.926.4
Language: Russian
Citation: V. Klajnig, “Stabilization of the trivial solution for an $n$-th order stationary linear differential equation”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 3, 57–61
Citation in format AMSBIB
\Bibitem{Kla82}
\by V.~Klajnig
\paper Stabilization of the trivial solution for an $n$-th order stationary linear differential equation
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1982
\issue 3
\pages 57--61
\mathnet{http://mi.mathnet.ru/vmumm4238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0671060}
\zmath{https://zbmath.org/?q=an:0536.34002}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4238
  • https://www.mathnet.ru/eng/vmumm/y1982/i3/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:58
    Full-text PDF :18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024