Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 3, Pages 3–6 (Mi vmumm4225)  

Mathematics

On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions

A. I. Vagabov
Abstract: We consider an irregular problem of the form
\begin{gather} y^{(n)}+\lambda p_1y^{(n-1)}+\dots+\lambda^n p_ny=0, \label{1}\\ y^{(\varkappa_i)}(0)+\sum_{k=1}^{\varkappa_i}\alpha_{ik}y^{(\varkappa_i-k)}(0)=0, \quad i=\overline{1,l}, \label{2}\\ y^{(\varkappa_i)}(1)+\sum_{k=1}^{\varkappa_i}\beta_{ik}y^{(\varkappa_i-k)}(1)=0, \quad i=\overline{l+1,n};\quad l>n-l, \label{3} \end{gather}
The following theorem is proved. If all argument the roots of the characteristic equation of (1) are different then the system of eigenfunctions and adjoint function of the problem (1) to (3) is $n$-multiply complete in $L_2(0,1)$.
Received: 17.05.1979
Bibliographic databases:
Document Type: Article
UDC: 517.43
Language: Russian
Citation: A. I. Vagabov, “On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 3, 3–6
Citation in format AMSBIB
\Bibitem{Vah82}
\by A.~I.~Vagabov
\paper On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1982
\issue 3
\pages 3--6
\mathnet{http://mi.mathnet.ru/vmumm4225}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0671047}
\zmath{https://zbmath.org/?q=an:0495.34012}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4225
  • https://www.mathnet.ru/eng/vmumm/y1982/i3/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024