|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 3, Pages 3–6
(Mi vmumm4225)
|
|
|
|
Mathematics
On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions
A. I. Vagabov
Abstract:
We consider an irregular problem of the form
\begin{gather}
y^{(n)}+\lambda p_1y^{(n-1)}+\dots+\lambda^n p_ny=0,
\label{1}\\
y^{(\varkappa_i)}(0)+\sum_{k=1}^{\varkappa_i}\alpha_{ik}y^{(\varkappa_i-k)}(0)=0,
\quad i=\overline{1,l},
\label{2}\\
y^{(\varkappa_i)}(1)+\sum_{k=1}^{\varkappa_i}\beta_{ik}y^{(\varkappa_i-k)}(1)=0,
\quad i=\overline{l+1,n};\quad l>n-l,
\label{3}
\end{gather}
The following theorem is proved. If all argument the roots of the characteristic equation of (1) are different then the system of eigenfunctions and adjoint function of the problem (1) to (3) is $n$-multiply complete in $L_2(0,1)$.
Received: 17.05.1979
Citation:
A. I. Vagabov, “On the multiple completeness of eigenfunctions and adjoint functions for ordinary differential bundles with irregular boundary conditions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 3, 3–6
Linking options:
https://www.mathnet.ru/eng/vmumm4225 https://www.mathnet.ru/eng/vmumm/y1982/i3/p3
|
Statistics & downloads: |
Abstract page: | 74 | Full-text PDF : | 25 |
|