|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 2, Pages 80–87
(Mi vmumm4162)
|
|
|
|
Mathematics
Combinatorial invariance of toric singularities
A. S. Demushkin
Abstract:
The are two theorems in this paper.
1. Let $\sigma_1$ and $\sigma_2$ be convex polyhedral cones in an $n$-dimensional lattice. Let $X_1$, $X_2$ be their associated affine toric varieties. $X_1$ and $X_2$ are isomorphic iff $\sigma_1$ and $\sigma_2$ are isomorphic.
2. Let $X_1$, $X_2$ be affine toric varieties. Let $T_1$ be a torus, embedded in $X_1$, $T_2$ be the same tor $X_2$. $X_1$, $X_2$ are isomorphic iff there exists a formal isomorphism between the points of maximal strati on $X_1$, $X_2$.
Received: 15.05.1981
Citation:
A. S. Demushkin, “Combinatorial invariance of toric singularities”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 2, 80–87
Linking options:
https://www.mathnet.ru/eng/vmumm4162 https://www.mathnet.ru/eng/vmumm/y1982/i2/p80
|
|