|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 2, Pages 5–8
(Mi vmumm4145)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
A solvability criterion for a finite-dimensional Lie algebra
A. I. Kostrikin
Abstract:
We prove that a finite-dimensional Lie algebra $L$ over an algebraically closed field of characteristic $p>0$ is solvable if $L=A+B$ where $[A,A]=0$, $\dim A<p^2-p$, and $B$ is an arbitrary nilpotent subalgebra. We study some more general situation, too.
Received: 15.10.1981
Citation:
A. I. Kostrikin, “A solvability criterion for a finite-dimensional Lie algebra”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 2, 5–8
Linking options:
https://www.mathnet.ru/eng/vmumm4145 https://www.mathnet.ru/eng/vmumm/y1982/i2/p5
|
Statistics & downloads: |
Abstract page: | 74 | Full-text PDF : | 27 |
|