Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2013, Number 3, Pages 10–21 (Mi vmumm402)  

This article is cited in 4 scientific papers (total in 4 papers)

Mathematics

Utility maximization problem in the case of unbounded endowment

R. V. Khasanov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (290 kB) Citations (4)
References:
Abstract: We consider a problem of maximizing expected utility with an utility function finite on $\mathbb{R}_+$ and with an unbounded random endowment in an abstract model of financial market. We formulate a dual problem to the primal one and prove duality relations between them. In addition, we study necessary conditions to the existence of solutions to the primal problem. Finally, we reduce the dual problem to a form more convenient for practice.
Key words: utility maximization, dual problem, random endowment, abstract model of market.
Received: 11.11.2011
English version:
Moscow University Mathematics Bulletin, 2013, Volume 68, Issue 3, Pages 138–147
DOI: https://doi.org/10.3103/S0027132213030029
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: R. V. Khasanov, “Utility maximization problem in the case of unbounded endowment”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 3, 10–21; Moscow University Mathematics Bulletin, 68:3 (2013), 138–147
Citation in format AMSBIB
\Bibitem{Kha13}
\by R.~V.~Khasanov
\paper Utility maximization problem in the case of unbounded endowment
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2013
\issue 3
\pages 10--21
\mathnet{http://mi.mathnet.ru/vmumm402}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2013
\vol 68
\issue 3
\pages 138--147
\crossref{https://doi.org/10.3103/S0027132213030029}
Linking options:
  • https://www.mathnet.ru/eng/vmumm402
  • https://www.mathnet.ru/eng/vmumm/y2013/i3/p10
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :39
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025