Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2013, Number 2, Pages 53–57 (Mi vmumm396)  

This article is cited in 3 scientific papers (total in 4 papers)

Short notes

A simple proof of the “geometric fractional monodromy theorem”

D. I. Tonkonog

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (270 kB) Citations (4)
References:
Abstract: We present a simple proof of the “Geometric fractional monodromy theorem” (Broer–Efstathiou–Lukina 2010). The fractional monodromy of a Liouville integrable Hamiltonian system over a loop $\gamma\subset \mathbb{R}^2$ is a generalization of the classic monodromy to the case when the Liouville foliation has singularities over $\gamma$. The “Geometric fractional monodromy theorem” finds, up to an integral parameter, the fractional monodromy of systems similar to the $1:(-2)$ resonance system. A handy equivalent definition of fractional monodromy is presented in terms of homology groups for our proof.
Key words: Liouville integrable Hamiltonian system, fractional monodromy, bifurcation.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00748-а
Ministry of Education and Science of the Russian Federation НШ-1410.2012.1
14.740.11.0794
11.G34.31.0054
Received: 20.06.2012
English version:
Moscow University Mathematics Bulletin, 2013, Volume 68, Issue 2, Pages 118–121
DOI: https://doi.org/10.3103/S0027132213020095
Bibliographic databases:
Document Type: Article
UDC: 514.853, 517.938.5, 515.146.2
Language: Russian
Citation: D. I. Tonkonog, “A simple proof of the “geometric fractional monodromy theorem””, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 2, 53–57; Moscow University Mathematics Bulletin, 68:2 (2013), 118–121
Citation in format AMSBIB
\Bibitem{Ton13}
\by D.~I.~Tonkonog
\paper A simple proof of the ``geometric fractional monodromy theorem''
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2013
\issue 2
\pages 53--57
\mathnet{http://mi.mathnet.ru/vmumm396}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114035}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2013
\vol 68
\issue 2
\pages 118--121
\crossref{https://doi.org/10.3103/S0027132213020095}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878070948}
Linking options:
  • https://www.mathnet.ru/eng/vmumm396
  • https://www.mathnet.ru/eng/vmumm/y2013/i2/p53
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024