|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2013, Number 2, Pages 53–57
(Mi vmumm396)
|
|
|
|
This article is cited in 3 scientific papers (total in 4 papers)
Short notes
A simple proof of the “geometric fractional monodromy theorem”
D. I. Tonkonog Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We present a simple proof of the “Geometric fractional monodromy theorem” (Broer–Efstathiou–Lukina 2010). The fractional monodromy of a Liouville integrable Hamiltonian system over a loop $\gamma\subset \mathbb{R}^2$ is a generalization of the classic monodromy to the case when the Liouville foliation has singularities over $\gamma$. The “Geometric fractional monodromy theorem” finds, up to an integral parameter, the fractional monodromy of systems similar to the $1:(-2)$ resonance system. A handy equivalent definition of fractional monodromy is presented in terms of homology groups for our proof.
Key words:
Liouville integrable Hamiltonian system, fractional monodromy, bifurcation.
Received: 20.06.2012
Citation:
D. I. Tonkonog, “A simple proof of the “geometric fractional monodromy theorem””, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 2, 53–57; Moscow University Mathematics Bulletin, 68:2 (2013), 118–121
Linking options:
https://www.mathnet.ru/eng/vmumm396 https://www.mathnet.ru/eng/vmumm/y2013/i2/p53
|
|