Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2017, Number 1, Pages 11–16 (Mi vmumm38)  

Mathematics

Probabilities of high extremes for a Gaussian stationary process in a random environment

A. O. Klebana, M. V. Korulin

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let $\xi\left(t\right)$ be a zero-mean stationary Gaussian process with the covariance function $r\left(t\right)$ of Pickands type, i.e., $r(t)=1-|t|^{\alpha}+o(|t|^{\alpha}),~t\to 0,~0<\alpha\leq2$, and $\eta\left(t\right), \zeta\left(t\right)$ be periodic random processes. For any $T>0$ and independent $\xi\left(t\right)$, $\eta\left(t\right)$, $\zeta\left(t\right)$ we obtain the exact asymptotic behaviour of the probabilities $P(\max_{t\in[0,T]} \eta\left(t\right) \xi\left(t\right) > u)$, $P(\max_{t\in[0,T]} \left(\xi\left(t\right) + \eta\left(t\right)\right) > u)$ and $P(\max_{t\in[0,T]} \left(\eta\left(t\right) \xi\left(t\right) + \zeta\left(t\right)\right) > u)$ for $u \to \infty$.
Key words: Gaussian process, random environment, high extremes probabilities, double sum method, Laplace asymptotic method.
Received: 16.11.2015
English version:
Moscow University Mathematics Bulletin, 2017, Volume 72, Issue 1, Pages 10–14
DOI: https://doi.org/10.3103/S0027132217010028
Bibliographic databases:
Document Type: Article
UDC: 519.218.7
Language: Russian
Citation: A. O. Kleban, M. V. Korulin, “Probabilities of high extremes for a Gaussian stationary process in a random environment”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 1, 11–16; Moscow University Mathematics Bulletin, 72:1 (2017), 10–14
Citation in format AMSBIB
\Bibitem{KleKor17}
\by A.~O.~Kleban, M.~V.~Korulin
\paper Probabilities of high extremes for a Gaussian stationary process in a random environment
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2017
\issue 1
\pages 11--16
\mathnet{http://mi.mathnet.ru/vmumm38}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3660600}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2017
\vol 72
\issue 1
\pages 10--14
\crossref{https://doi.org/10.3103/S0027132217010028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000398851200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016124822}
Linking options:
  • https://www.mathnet.ru/eng/vmumm38
  • https://www.mathnet.ru/eng/vmumm/y2017/i1/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:81
    Full-text PDF :43
    References:28
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024