|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2017, Number 1, Pages 11–16
(Mi vmumm38)
|
|
|
|
Mathematics
Probabilities of high extremes for a Gaussian stationary process in a random environment
A. O. Klebana, M. V. Korulin a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Let $\xi\left(t\right)$ be a zero-mean stationary Gaussian process with the covariance function $r\left(t\right)$ of Pickands type, i.e., $r(t)=1-|t|^{\alpha}+o(|t|^{\alpha}),~t\to 0,~0<\alpha\leq2$, and $\eta\left(t\right), \zeta\left(t\right)$ be periodic random processes. For any $T>0$ and independent $\xi\left(t\right)$, $\eta\left(t\right)$, $\zeta\left(t\right)$ we obtain the exact asymptotic behaviour of the probabilities $P(\max_{t\in[0,T]} \eta\left(t\right) \xi\left(t\right) > u)$, $P(\max_{t\in[0,T]} \left(\xi\left(t\right) + \eta\left(t\right)\right) > u)$ and $P(\max_{t\in[0,T]} \left(\eta\left(t\right) \xi\left(t\right) + \zeta\left(t\right)\right) > u)$ for $u \to \infty$.
Key words:
Gaussian process, random environment, high extremes probabilities, double sum method, Laplace asymptotic method.
Received: 16.11.2015
Citation:
A. O. Kleban, M. V. Korulin, “Probabilities of high extremes for a Gaussian stationary process in a random environment”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 1, 11–16; Moscow University Mathematics Bulletin, 72:1 (2017), 10–14
Linking options:
https://www.mathnet.ru/eng/vmumm38 https://www.mathnet.ru/eng/vmumm/y2017/i1/p11
|
Statistics & downloads: |
Abstract page: | 81 | Full-text PDF : | 43 | References: | 28 | First page: | 1 |
|