Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2013, Number 1, Pages 32–37 (Mi vmumm375)  

Mathematics

Inverse coding theorem for infinite-dimensional quantum channels

A. A. Kuznetsova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this paper we make a conjecture about the quantum capacity of an infinite-dimensional quantum channel. The proof of the inverse theorem is given based on definitions and properties of the coherent information in the infinite-dimensional case.
Key words: coherent information, quantum channel, quantum capacity.
Received: 15.02.2012
English version:
Moscow University Mathematics Bulletin, 2013, Volume 68, Issue 1, Pages 48–52
DOI: https://doi.org/10.3103/S0027132213010099
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: A. A. Kuznetsova, “Inverse coding theorem for infinite-dimensional quantum channels”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 1, 32–37; Moscow University Mathematics Bulletin, 68:1 (2013), 48–52
Citation in format AMSBIB
\Bibitem{Kuz13}
\by A.~A.~Kuznetsova
\paper Inverse coding theorem for infinite-dimensional quantum channels
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2013
\issue 1
\pages 32--37
\mathnet{http://mi.mathnet.ru/vmumm375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114427}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2013
\vol 68
\issue 1
\pages 48--52
\crossref{https://doi.org/10.3103/S0027132213010099}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84875000846}
Linking options:
  • https://www.mathnet.ru/eng/vmumm375
  • https://www.mathnet.ru/eng/vmumm/y2013/i1/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:87
    Full-text PDF :24
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024