|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2019, Number 5, Pages 51–55
(Mi vmumm3628)
|
|
|
|
Short notes
Approaching real numbers by sums of squares of two primes
A. P. Naumenko Public Corporation "Infotecs", Moscow
Abstract:
It is proved that a given real number $N>N_0(\varepsilon)$ can be approached by the sum of squares of two primes to the distance not exceeding $H = N^{31/64-1/300 + \varepsilon}$, where $\varepsilon$ is an arbitrary positive number.
Key words:
primes, diophantine inequalities, density theorem.
Received: 05.12.2018
Citation:
A. P. Naumenko, “Approaching real numbers by sums of squares of two primes”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 5, 51–55; Moscow University Mathematics Bulletin, 74:5 (2019), 205–208
Linking options:
https://www.mathnet.ru/eng/vmumm3628 https://www.mathnet.ru/eng/vmumm/y2019/i5/p51
|
Statistics & downloads: |
Abstract page: | 105 | Full-text PDF : | 30 | References: | 20 | First page: | 1 |
|