|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 6, Pages 57–62
(Mi vmumm3590)
|
|
|
|
Mathematics
Congruences of conics in $\mathbf{P}^3$
V. A. Iskovskikh
Abstract:
Let $\pi\colon V\to S$ be a conic bundle with a discriminant locus $C\subset S$. We claim the following rationality criterion. $V$ is rational if there exists a pencil of rational curves $\{L_\lambda\subset S|_\lambda\in \mathbf{P}^1\}$ such that either $(L_\lambda\cdot C)\le3$ or $S=\mathbf{P}^3$, $\deg C=5$ and $\pi$ corresponds to an even $\theta$-characteristic. Here we prove the “only if” part of the criterion. The “if” part is reduced to a question of birational equivalence of the congruence of rational curves in $\mathbf{P}^3$ to the congruence of conies.
Received: 09.06.1982
Citation:
V. A. Iskovskikh, “Congruences of conics in $\mathbf{P}^3$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 57–62
Linking options:
https://www.mathnet.ru/eng/vmumm3590 https://www.mathnet.ru/eng/vmumm/y1982/i6/p57
|
Statistics & downloads: |
Abstract page: | 78 | Full-text PDF : | 26 |
|