Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 6, Pages 50–57 (Mi vmumm3589)  

This article is cited in 3 scientific papers (total in 4 papers)

Mathematics

Some remarks on the antidynamo theorem

V. I. Arnol'd
Abstract: We study the evolution of differential $k$-forms on a compact Riemannian $m$-manifold without boundary (due to the transport by the flow of a given vector field and due to the diffusion). Every forjn evolves into a stationary one (which is unique in its cohomology class) if either the diffusion is fast enough or $k=0,m$. We prove that the number of independent stationary forms is at least the $k$-th Betti number (which does not depend on the rate of the diffusion). The $2$-dimensional magnetic fields $(k=1,m=2)$ are proved to evolve into cohomologous stationary fields. Examples show the non-uniqueness of stationary magnetic fields in a given cohomology class on $3$-manifolds $(k=2, m=3)$ and (the existence of fields growing exponentially with time and, in particular, of periodic fields in the usual $3$-space.
Received: 19.06.1982
Bibliographic databases:
Document Type: Article
UDC: 538.4
Language: Russian
Citation: V. I. Arnol'd, “Some remarks on the antidynamo theorem”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 50–57
Citation in format AMSBIB
\Bibitem{Arn82}
\by V.~I.~Arnol'd
\paper Some remarks on the antidynamo theorem
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1982
\issue 6
\pages 50--57
\mathnet{http://mi.mathnet.ru/vmumm3589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0685264}
\zmath{https://zbmath.org/?q=an:0532.58034}
Linking options:
  • https://www.mathnet.ru/eng/vmumm3589
  • https://www.mathnet.ru/eng/vmumm/y1982/i6/p50
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024