|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 6, Pages 31–37
(Mi vmumm3585)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
Varieties of representations of finite-dimensional algebras in prime algebras
Yu. P. Razmyslov
Abstract:
We prove that the pairs $(A_1,\mathfrak{G}_1)$ and $(A_2,\mathfrak{G}_2)$ have the same identical relations if and only if for some field extension $K_1\supset K$ the pairs $(K_1\otimes_K A_1,K_1\otimes_K\mathfrak{G}_1)$ and $(K_1\otimes_K A_2,K_1\otimes_K\mathfrak{G}_2)$ are semilinear isomorphic. Here $\mathfrak{G}_1$, $\mathfrak{G}_2$ are some finite dimensional $K$-algebras of signature $\Omega'$ and $A_1$, $A_2$ are some central prime algebras of signature $\Omega$.
Received: 12.02.1982
Citation:
Yu. P. Razmyslov, “Varieties of representations of finite-dimensional algebras in prime algebras”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 31–37
Linking options:
https://www.mathnet.ru/eng/vmumm3585 https://www.mathnet.ru/eng/vmumm/y1982/i6/p31
|
Statistics & downloads: |
Abstract page: | 65 | Full-text PDF : | 31 |
|