Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 6, Pages 8–12 (Mi vmumm3581)  

Mathematics

Equivalence of two definitions of the algebraic $K$-theory of spaces

Yu. P. Solov'ev
Full-text PDF (594 kB) Citations (1)
Abstract: We introduce a new construction of the algebraic $K$-functor $AX$ for any topological space $X$. This construction has the origin in the theory of buildings and BN-pairs. Then we prove the equivalence of this construction and that of Waldhausen.
Received: 04.12.1981
Bibliographic databases:
Document Type: Article
UDC: 513.83
Language: Russian
Citation: Yu. P. Solov'ev, “Equivalence of two definitions of the algebraic $K$-theory of spaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 6, 8–12
Citation in format AMSBIB
\Bibitem{Sol82}
\by Yu.~P.~Solov'ev
\paper Equivalence of two definitions of the algebraic $K$-theory of spaces
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1982
\issue 6
\pages 8--12
\mathnet{http://mi.mathnet.ru/vmumm3581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0685256}
\zmath{https://zbmath.org/?q=an:0532.18007}
Linking options:
  • https://www.mathnet.ru/eng/vmumm3581
  • https://www.mathnet.ru/eng/vmumm/y1982/i6/p8
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024