|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 5, Pages 59–63
(Mi vmumm3570)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Mathematics
$A$-integrability of functions
T. P. Lukashenko
Abstract:
We give an example of a function which is $A$-integrable on a segment $[a,b]$ and is not $A$-integrable on all subsegments $[a',b']\subset[a,b]$, $[a',b']\ne[a,b]$, $a'\ne b'$. We prove the following theorem. The class of sets $\Bigl\{x\in[a,b]:(A)\displaystyle\int_{x_0}^x f(t)\,dt\,\text{exists}\Bigr\}$, $a\leq x_0\leq b$, is exactly the class of sets which contain $x_0$ and are of the type $F_{\sigma\delta}$ on $[a,b]$.
Received: 26.01.1982
Citation:
T. P. Lukashenko, “$A$-integrability of functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5, 59–63
Linking options:
https://www.mathnet.ru/eng/vmumm3570 https://www.mathnet.ru/eng/vmumm/y1982/i5/p59
|
|