Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 5, Pages 56–59 (Mi vmumm3569)  

Mathematics

Essentiality of the spectrum of pseudodifferential operators in the Besicovitch space $B^2(\mathbf{R}^n)$

M. A. Shubin
Abstract: Let $\bar A$ be the closure of an almost periodic pseudo-differential operator $A$ in the Besicovitch Hilbert space of almost periodic functions $B^2(\mathbf R^n)$. The following theorem is proved. If $0<\operatorname{dim} \operatorname{Ker}(\bar A-\lambda I)<\infty$ for some $\lambda\in\mathbf C$ then the image $\operatorname{Im}(\bar A-\lambda I)$ is not closed in $B^2(\mathbf R^n)$. A corollary: If $A$ Is bounded, elliptic or hypoelliptic (from the Hörmander class) and $\bar A-\lambda I$ is Fredholm then it is invertible (i.e. possesses a bounded everywhere defined inverse operator). For a self-adjoint $A$ this is equivalent to the essentiality of the spectrum, i.e. the fact that every point of the spectrum is either non-isolated or is an eigenvalue of infinite multiplicity.
Received: 14.01.1982
Bibliographic databases:
Document Type: Article
UDC: 517.43
Language: Russian
Citation: M. A. Shubin, “Essentiality of the spectrum of pseudodifferential operators in the Besicovitch space $B^2(\mathbf{R}^n)$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5, 56–59
Citation in format AMSBIB
\Bibitem{Shu82}
\by M.~A.~Shubin
\paper Essentiality of the spectrum of pseudodifferential operators in the Besicovitch space $B^2(\mathbf{R}^n)$
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1982
\issue 5
\pages 56--59
\mathnet{http://mi.mathnet.ru/vmumm3569}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0679482}
\zmath{https://zbmath.org/?q=an:0525.47035}
Linking options:
  • https://www.mathnet.ru/eng/vmumm3569
  • https://www.mathnet.ru/eng/vmumm/y1982/i5/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024