Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1982, Number 5, Pages 43–48 (Mi vmumm3565)  

Mathematics

Rational functions of best approximation in integral metrics

A. K. Ramazanov
Abstract: We prove that any rational function of degree $\le n$ with real coefficients best approximating a function $f\in L_q(a,b)$, $1<q<\infty$, in the metric of $L_q(a,b)$ is of degree exactly $n$. We find the signs of the polynomials best approximating in the metric of $L_q([a,b])$, $1\le q\le\infty$ for some classes of differentiate functions.
Received: 11.12.1981
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. K. Ramazanov, “Rational functions of best approximation in integral metrics”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1982, no. 5, 43–48
Citation in format AMSBIB
\Bibitem{Ram82}
\by A.~K.~Ramazanov
\paper Rational functions of best approximation in integral metrics
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1982
\issue 5
\pages 43--48
\mathnet{http://mi.mathnet.ru/vmumm3565}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0679478}
\zmath{https://zbmath.org/?q=an:0522.41018}
Linking options:
  • https://www.mathnet.ru/eng/vmumm3565
  • https://www.mathnet.ru/eng/vmumm/y1982/i5/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024