Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1983, Number 3, Pages 59–61 (Mi vmumm3494)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Quillen's theorem for graded algebras

V. A. Artamonov
Full-text PDF (416 kB) Citations (2)
Abstract: It is shown that Quillen's localization theorem, which plays an important part in the solution of Serre's problem of projective modules over rings of polynomials, holds for graded algebras.
Received: 28.11.1982
Bibliographic databases:
Document Type: Article
UDC: 512.553
Language: Russian
Citation: V. A. Artamonov, “Quillen's theorem for graded algebras”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 3, 59–61
Citation in format AMSBIB
\Bibitem{Art83}
\by V.~A.~Artamonov
\paper Quillen's theorem for graded algebras
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 1983
\issue 3
\pages 59--61
\mathnet{http://mi.mathnet.ru/vmumm3494}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0705601}
\zmath{https://zbmath.org/?q=an:0519.16002}
Linking options:
  • https://www.mathnet.ru/eng/vmumm3494
  • https://www.mathnet.ru/eng/vmumm/y1983/i3/p59
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024