|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1983, Number 3, Pages 46–52
(Mi vmumm3492)
|
|
|
|
Mathematics
Estimate of the first eigenvalue of a selfadjoint elliptic operator
Yu. V. Egorov, V. A. Kondratiev
Abstract:
Let $L$ be a symmetric positive elliptic operator o! order m with smooth coefficients in a bounded domain. The problem considered is that of estimating a minimum number $\lambda$ for which the homogeneous Dirichlet problem for the equation $Lu-\lambda Qu=0$ has a non-trivial solution. It is assumed that $Q(x)\ge0$, $\int Q^\alpha(x)\,dx=1$, where $\alpha$ is a real number, $\alpha\ne0$.
Received: 26.11.1982
Citation:
Yu. V. Egorov, V. A. Kondratiev, “Estimate of the first eigenvalue of a selfadjoint elliptic operator”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 3, 46–52
Linking options:
https://www.mathnet.ru/eng/vmumm3492 https://www.mathnet.ru/eng/vmumm/y1983/i3/p46
|
Statistics & downloads: |
Abstract page: | 92 | Full-text PDF : | 32 |
|