|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1983, Number 3, Pages 8–11
(Mi vmumm3485)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Mathematics
Properties of random sections of an $N$-dimensional cube
B. S. Kashin
Abstract:
An answer is given to a question of T. Figiel and W. Johnson. It is shown that $0<\alpha<1$, $1\le n\le N^\alpha$,
$$
\int d(l^N_\infty\cap L,l^n_2)\,d\mu_{N,n}\le C_\alpha\max(n^{1/2}\ln^{-1/2}N,1),
$$
where $d(X,Y)$ is the Banach–Mazur distance between normed spaces $X$ and $Y$, $L$ are $n$-dimensional subspaces in $R^N$, and $\mu_{N,n}$ is the invariant measure on the set of all $n$-dimensional subspaces in $R^N$.
Received: 09.08.1982
Citation:
B. S. Kashin, “Properties of random sections of an $N$-dimensional cube”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1983, no. 3, 8–11
Linking options:
https://www.mathnet.ru/eng/vmumm3485 https://www.mathnet.ru/eng/vmumm/y1983/i3/p8
|
Statistics & downloads: |
Abstract page: | 89 | Full-text PDF : | 26 |
|