|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 3, Pages 57–60
(Mi vmumm34)
|
|
|
|
Short notes
The Lindelöff number functional spaces over monolithic compacta
D. P. Baturova, E. A. Reznichenkob a Orel State University
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Let $X$ be a compactum, $\tau$ be an infinite cardinal, and $t(X)\le\tau$. In this case, $l(C_p(X))\le 2^\tau$. If $X$ is $\tau$-monolithic, then $l(C_p(X))\le \tau^+$. In addition, if $X$ is zero-dimensional and there are no $\tau ^+$-Aronszajn trees, then $l(C_p(X))\le \tau$.
Key words:
function space, Lindelöf number, tightness, monolithic compactum, Aronszajn tree.
Received: 14.12.2016
Citation:
D. P. Baturov, E. A. Reznichenko, “The Lindelöff number functional spaces over monolithic compacta”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 3, 57–60; Moscow University Mathematics Bulletin, 73:3 (2018), 116–119
Linking options:
https://www.mathnet.ru/eng/vmumm34 https://www.mathnet.ru/eng/vmumm/y2018/i3/p57
|
|