Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 3, Pages 57–60 (Mi vmumm34)  

Short notes

The Lindelöff number functional spaces over monolithic compacta

D. P. Baturova, E. A. Reznichenkob

a Orel State University
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Let $X$ be a compactum, $\tau$ be an infinite cardinal, and $t(X)\le\tau$. In this case, $l(C_p(X))\le 2^\tau$. If $X$ is $\tau$-monolithic, then $l(C_p(X))\le \tau^+$. In addition, if $X$ is zero-dimensional and there are no $\tau ^+$-Aronszajn trees, then $l(C_p(X))\le \tau$.
Key words: function space, Lindelöf number, tightness, monolithic compactum, Aronszajn tree.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05369
Received: 14.12.2016
English version:
Moscow University Mathematics Bulletin, 2018, Volume 73, Issue 3, Pages 116–119
DOI: https://doi.org/10.3103/S0027132218030063
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: D. P. Baturov, E. A. Reznichenko, “The Lindelöff number functional spaces over monolithic compacta”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 3, 57–60; Moscow University Mathematics Bulletin, 73:3 (2018), 116–119
Citation in format AMSBIB
\Bibitem{BatRez18}
\by D.~P.~Baturov, E.~A.~Reznichenko
\paper The Lindel\"off number functional spaces over monolithic compacta
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2018
\issue 3
\pages 57--60
\mathnet{http://mi.mathnet.ru/vmumm34}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3831455}
\zmath{https://zbmath.org/?q=an:1404.54015}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2018
\vol 73
\issue 3
\pages 116--119
\crossref{https://doi.org/10.3103/S0027132218030063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437465600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049552721}
Linking options:
  • https://www.mathnet.ru/eng/vmumm34
  • https://www.mathnet.ru/eng/vmumm/y2018/i3/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024