|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2014, Number 4, Pages 32–37
(Mi vmumm333)
|
|
|
|
Mathematics
Additivity of homological dimensions for tensor products of some Banach algebras
S. B. Tabaldyev Bauman Moscow State Technical University
Abstract:
It is proved that if $A=C(\Omega)$, where $\Omega$ is an infinite metrizable compact space such that some finite-order iterated derived set of $\Omega$ is empty, then for every unital Banach algebra $B$ the global dimensions and the bidimensions of the Banach algebras $A\mathop{\widehat{\otimes}} B$ and $B$ are related by $\mathop{\mathrm{dg}} A\mathop{\widehat{\otimes}} B=2+\mathop{\mathrm{dg}} B$ and $\mathop{\mathrm{db}} A\mathop{\widehat{\otimes}} B=2+\mathop{\mathrm{db}} B$. Thus, a partial extension of Selivanov's result is obtained.
Key words:
Banach module, homological dimension, global dimension, bidimension.
Received: 18.02.2013
Citation:
S. B. Tabaldyev, “Additivity of homological dimensions for tensor products of some Banach algebras”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 4, 32–37; Moscow University Mathematics Bulletin, 69:4 (2014), 164–168
Linking options:
https://www.mathnet.ru/eng/vmumm333 https://www.mathnet.ru/eng/vmumm/y2014/i4/p32
|
Statistics & downloads: |
Abstract page: | 181 | Full-text PDF : | 43 | References: | 37 |
|