Loading [MathJax]/jax/output/SVG/config.js
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2014, Number 4, Pages 6–17 (Mi vmumm330)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

Integer lattices of action-angle variables for “spherical pendulum” system

E. O. Kantonistova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (591 kB) Citations (3)
References:
Abstract: In this paper we study the topology of a “spherical pendulum” system and construct the lattice generated by lines of integer levels of action variables for this system. We describe an algorithm for computing numerical marks of Fomenko–Zieschang invariant and monodromy matrices using these lattices. We apply this algorithm to a “spherical pendulum” system.
Key words: Hamiltonian monodromy, action variables, integrable Hamiltonian systems, rigid body, Fomenko–Zieschang invariant.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.740.11.0794
Received: 20.06.2012
English version:
Moscow University Mathematics Bulletin, 2014, Volume 69, Issue 4, Pages 135–147
DOI: https://doi.org/10.3103/S0027132214040019
Bibliographic databases:
Document Type: Article
UDC: 514.8
Language: Russian
Citation: E. O. Kantonistova, “Integer lattices of action-angle variables for “spherical pendulum” system”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 4, 6–17; Moscow University Mathematics Bulletin, 69:4 (2014), 135–147
Citation in format AMSBIB
\Bibitem{Kan14}
\by E.~O.~Kantonistova
\paper Integer lattices of action-angle variables for ``spherical pendulum'' system
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2014
\issue 4
\pages 6--17
\mathnet{http://mi.mathnet.ru/vmumm330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3372781}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2014
\vol 69
\issue 4
\pages 135--147
\crossref{https://doi.org/10.3103/S0027132214040019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84926642021}
Linking options:
  • https://www.mathnet.ru/eng/vmumm330
  • https://www.mathnet.ru/eng/vmumm/y2014/i4/p6
  • This publication is cited in the following 3 articles:
    1. E. O. Kantonistova, “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. E. O. Kantonistova, “Liouville classification of integrable Hamiltonian systems on surfaces of revolution”, Moscow University Mathematics Bulletin, 70:5 (2015), 220–222  mathnet  crossref  mathscinet  isi
    3. A. T. Fomenko, E. O. Kantonistova, “Topological classification of geodesic flows on revolution $2$-surfaces with potential”, Continuous and Distributed Systems II: Theory and Applications, Studies in Systems Decision and Control, 30, ed. V. Sadovnichiy, M. Zgurovsky, Springer, 2015, 11–27  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :63
    References:36
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025