|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2014, Number 4, Pages 6–17
(Mi vmumm330)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Mathematics
Integer lattices of action-angle variables for “spherical pendulum” system
E. O. Kantonistova Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
In this paper we study the topology of a “spherical pendulum” system and construct the lattice generated by lines of integer levels of action variables for this system. We describe an algorithm for computing numerical marks of Fomenko–Zieschang invariant and monodromy matrices using these lattices. We apply this algorithm to a “spherical pendulum” system.
Key words:
Hamiltonian monodromy, action variables, integrable Hamiltonian systems, rigid body, Fomenko–Zieschang invariant.
Received: 20.06.2012
Citation:
E. O. Kantonistova, “Integer lattices of action-angle variables for “spherical pendulum” system”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 4, 6–17; Moscow University Mathematics Bulletin, 69:4 (2014), 135–147
Linking options:
https://www.mathnet.ru/eng/vmumm330 https://www.mathnet.ru/eng/vmumm/y2014/i4/p6
|
Statistics & downloads: |
Abstract page: | 189 | Full-text PDF : | 58 | References: | 33 |
|