Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2014, Number 3, Pages 56–60 (Mi vmumm324)  

Short notes

Four theorems on uniform estimates of oscillatory integrals

V. N. Karpushkin

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: The exact order of uniform estimates of oscillatory integrals with monomial phase is obtaind. This result is close to the hypothesis of V. I. Arnold about uniform estimates of oscillatory integrals. Namely, for absolute values of oscillatory integrals we derive estimates of order $\tau^{-1/k}\ln^{n-1}\tau$ uniform with respect to phase and amplitude for every sufficiently small perturbation phase, i.e., the monomial $x_1^{m_1}\ldots x_n^{m_n}, m_j\leq k, 1\leq k$, by monomials $x_1^{s_1}\ldots x_n^{s_n}$, where $s_j\leq k, 1\leq j\leq n$, and for each amplitude $\varphi\in C_0^2(R^n), n>0$. In the case $|m|<nk$ the upper uniform estimate with the same perturbation and the same amplitude have the order $\tau^{-1/k}\ln^{n-2}\tau.$ The estimate by order $\tau^{-1/k}\ln^{n-2}\tau$ was proved in the case when the amplitude vanishes at the origin. In the case $k=1$, a uniform estimate of order $\tau^{-1}\ln^{n-2}\tau$ is valid. This implies a uniform estimate for a polynomial phase. The upper estimate of oscillatory integral $32^n\tau^{-1/k}\ln^{n-1}(\tau+2)$ was known previously for the amplitude being the characteristic function of a cube and the same phase.
Key words: oscillatory integral, phase, amplitude, uniform estimate.
Received: 01.03.2013
English version:
Moscow University Mathematics Bulletin, 2014, Volume 69, Issue 3, Pages 128–131
DOI: https://doi.org/10.3103/S0027132214030085
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. N. Karpushkin, “Four theorems on uniform estimates of oscillatory integrals”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 3, 56–60; Moscow University Mathematics Bulletin, 69:3 (2014), 128–131
Citation in format AMSBIB
\Bibitem{Kar14}
\by V.~N.~Karpushkin
\paper Four theorems on uniform estimates of oscillatory integrals
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2014
\issue 3
\pages 56--60
\mathnet{http://mi.mathnet.ru/vmumm324}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3310110}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2014
\vol 69
\issue 3
\pages 128--131
\crossref{https://doi.org/10.3103/S0027132214030085}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903843478}
Linking options:
  • https://www.mathnet.ru/eng/vmumm324
  • https://www.mathnet.ru/eng/vmumm/y2014/i3/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024