Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2014, Number 3, Pages 50–54 (Mi vmumm322)  

This article is cited in 2 scientific papers (total in 2 papers)

Short notes

The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$

T. I. Krasnova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (334 kB) Citations (2)
References:
Abstract: It is stated that the conjunction complexity $L_k^{\&}(f^n_2)$ of monotone symmetric Boolean functions $f_2^n(x_1,\ldots,x_n)=\bigvee \limits_{1\leq i<j\leq n}x_i x_j$ realized by $k$-self-correcting circuits in the basis $B=\{\&,-\}$ asymptotically equals $(k+2)n$ for growing $n$ when the price of a reliable conjunctor is $\geq k+2$.
Key words: circuits, monotonic symmetric Boolean functions, conjunction complexity, self-correcting circuit.
Received: 13.04.2012
English version:
Moscow University Mathematics Bulletin, 2014, Volume 69, Issue 3, Pages 121–124
DOI: https://doi.org/10.3103/S0027132214030061
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: T. I. Krasnova, “The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold $2$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 3, 50–54; Moscow University Mathematics Bulletin, 69:3 (2014), 121–124
Citation in format AMSBIB
\Bibitem{Kra14}
\by T.~I.~Krasnova
\paper The conjunction complexity asymptotic of self-correcting circuits for monotone symmetric functions with threshold~$2$
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2014
\issue 3
\pages 50--54
\mathnet{http://mi.mathnet.ru/vmumm322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3310108}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2014
\vol 69
\issue 3
\pages 121--124
\crossref{https://doi.org/10.3103/S0027132214030061}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903845611}
Linking options:
  • https://www.mathnet.ru/eng/vmumm322
  • https://www.mathnet.ru/eng/vmumm/y2014/i3/p50
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :27
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024