Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 3, Pages 43–50 (Mi vmumm32)  

This article is cited in 4 scientific papers (total in 4 papers)

Mechanics

Formulation of problems in the general Kirchhoff–Love theory of inhomogeneous anisotropic plates

V. I. Gorbachev, L. A. Kabanova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (424 kB) Citations (4)
References:
Abstract: In this paper we study the procedure of reducing the three-dimensional problem of elasticity theory for a thin inhomogeneous anisotropic plate to a two-dimensional problem in the median plane. The plate is in equilibrium under the action of bulk and surface forces of general form. A notion of internal force factors is introduced. Equations for force factors (equilibrium equations in the median plane) are obtained from the thickness-averaged three-dimensional equations of elasticity theory. In order to establish the relation between the internal force factors and the characteristics of the deformed middle surface, we use some prior assumptions on the distribution of displacements along the thickness of the plate. To arrange these assumptions in order, the displacements of plate points are expanded into Taylor series in the transverse coordinate with consideration of the physical hypotheses on the deformation of a material fiber that is originally perpendicular to the median plane. The well-known Kirchhoff–Love hypothesis is considered in detail. A closed system of equations for the theory of inhomogeneous anisotropic plates is obtained on the basis of the Kirchhoff–Love hypothesis. The boundary conditions are formulated from the Lagrange variation principle.
Key words: plates, composite materials, elasticity theory, inhomogeneous anisotropic plates.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.577.21.0271
Received: 28.03.2017
English version:
Moscow University Mechanics Bulletin, 2018, Volume 73, Issue 3, Pages 60–66
DOI: https://doi.org/10.3103/S0027133018020020
Bibliographic databases:
Document Type: Article
UDC: 539.4.25
Language: Russian
Citation: V. I. Gorbachev, L. A. Kabanova, “Formulation of problems in the general Kirchhoff–Love theory of inhomogeneous anisotropic plates”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 3, 43–50; Moscow University Mechanics Bulletin, 73:3 (2018), 60–66
Citation in format AMSBIB
\Bibitem{GorKab18}
\by V.~I.~Gorbachev, L.~A.~Kabanova
\paper Formulation of problems in the general Kirchhoff--Love theory of inhomogeneous anisotropic plates
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2018
\issue 3
\pages 43--50
\mathnet{http://mi.mathnet.ru/vmumm32}
\zmath{https://zbmath.org/?q=an:06952477}
\transl
\jour Moscow University Mechanics Bulletin
\yr 2018
\vol 73
\issue 3
\pages 60--66
\crossref{https://doi.org/10.3103/S0027133018020020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437768600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049600536}
Linking options:
  • https://www.mathnet.ru/eng/vmumm32
  • https://www.mathnet.ru/eng/vmumm/y2018/i3/p43
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024