Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 3, Pages 21–29 (Mi vmumm29)  

This article is cited in 6 scientific papers (total in 6 papers)

Mathematics

Topology of Liouville bundles of integrable billiard in non-convex domains

V. A. Moskvin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (494 kB) Citations (6)
References:
Abstract: Flat billiards are studied in non-convex domains bounded by segments of confocal quadrics and also in domains bounded by segments of mutually perpendicular straignt lines. The topology of isoenergetic surfaces of such billiards is studied by calculating invariants of rough Liouville's equivalency also known as Fomenko's molecule.
Key words: billiard, integrable systems, Liouville's foliation, Fomenko's invariant.
Received: 27.10.2017
English version:
Moscow University Mathematics Bulletin, 2018, Volume 73, Issue 3, Pages 103–110
DOI: https://doi.org/10.3103/S002713221803004X
Bibliographic databases:
Document Type: Article
UDC: 154
Language: Russian
Citation: V. A. Moskvin, “Topology of Liouville bundles of integrable billiard in non-convex domains”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 3, 21–29; Moscow University Mathematics Bulletin, 73:3 (2018), 103–110
Citation in format AMSBIB
\Bibitem{Mos18}
\by V.~A.~Moskvin
\paper Topology of Liouville bundles of integrable billiard in non-convex domains
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2018
\issue 3
\pages 21--29
\mathnet{http://mi.mathnet.ru/vmumm29}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3831453}
\zmath{https://zbmath.org/?q=an:1397.37060}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2018
\vol 73
\issue 3
\pages 103--110
\crossref{https://doi.org/10.3103/S002713221803004X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437465600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049689469}
Linking options:
  • https://www.mathnet.ru/eng/vmumm29
  • https://www.mathnet.ru/eng/vmumm/y2018/i3/p21
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024