Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2015, Number 6, Pages 48–52 (Mi vmumm283)  

This article is cited in 2 scientific papers (total in 2 papers)

Short notes

The efficiency of perturbations in the class of linear Hamiltonian systems

T. V. Salova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (316 kB) Citations (2)
References:
Abstract: It is proved that the set of all limiting values of solutions' arbitrary indicators under uniformly small perturbations for the linear Hamiltonian system's coefficients is the same as the similar set obtained by uniformly small Hamiltonian perturbations.
Key words: linear systems, Hamiltonian systems, Lyapunov exponents, oscillation, wandering.
Received: 15.10.2014
English version:
Moscow University Mathematics Bulletin, 2015, Volume 70, Issue 6, Pages 274–277
DOI: https://doi.org/10.3103/S0027132215060078
Bibliographic databases:
Document Type: Article
UDC: 517.926.4
Language: Russian
Citation: T. V. Salova, “The efficiency of perturbations in the class of linear Hamiltonian systems”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 6, 48–52; Moscow University Mathematics Bulletin, 70:6 (2015), 274–277
Citation in format AMSBIB
\Bibitem{Sal15}
\by T.~V.~Salova
\paper The efficiency of perturbations in the class of linear Hamiltonian systems
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2015
\issue 6
\pages 48--52
\mathnet{http://mi.mathnet.ru/vmumm283}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3460937}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2015
\vol 70
\issue 6
\pages 274--277
\crossref{https://doi.org/10.3103/S0027132215060078}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000218415200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84955564360}
Linking options:
  • https://www.mathnet.ru/eng/vmumm283
  • https://www.mathnet.ru/eng/vmumm/y2015/i6/p48
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :26
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024