Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2015, Number 5, Pages 34–37 (Mi vmumm264)  

This article is cited in 3 scientific papers (total in 3 papers)

Short notes

The axiom of cosymplectic surfaces and $W_4$-manifolds

M. B. Banaru

Smolensk State University
Full-text PDF (300 kB) Citations (3)
References:
Abstract: An almost Hermitian manifold satisfies the cosymplectic $t$-hypersurfaces axiom, if a cosymplectic hypersurface with type number $t$ passes through every its point. It is proved that if an arbitrary $W_4$-manifold satisfies the cosymplectic $t$-hypersurfaces axiom with $t\leq1$, then this manifold is Kählerian.
Key words: almost contact metric structure, cosymplectic structure, type number, hypersurface, $W_4$-manifold.
Received: 24.03.2014
English version:
Moscow University Mathematics Bulletin, 2015, Volume 70, Issue 5, Pages 213–215
DOI: https://doi.org/10.3103/S0027132215050046
Bibliographic databases:
Document Type: Article
UDC: 513.82
Language: Russian
Citation: M. B. Banaru, “The axiom of cosymplectic surfaces and $W_4$-manifolds”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 5, 34–37; Moscow University Mathematics Bulletin, 70:5 (2015), 213–215
Citation in format AMSBIB
\Bibitem{Ban15}
\by M.~B.~Banaru
\paper The axiom of cosymplectic surfaces and $W_4$-manifolds
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2015
\issue 5
\pages 34--37
\mathnet{http://mi.mathnet.ru/vmumm264}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3460875}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2015
\vol 70
\issue 5
\pages 213--215
\crossref{https://doi.org/10.3103/S0027132215050046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000218414300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84958150168}
Linking options:
  • https://www.mathnet.ru/eng/vmumm264
  • https://www.mathnet.ru/eng/vmumm/y2015/i5/p34
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024