Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2015, Number 4, Pages 13–24 (Mi vmumm246)  

Mathematics

Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method

E. A. Kudryavtseva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A 2-parameter family of Hamiltonian systems $\mathcal{H}_{\omega,\varepsilon}$ with two degrees of freedom is studied, where the system $\mathcal{H}_{\omega,0}$ describes the Kepler problem in rotating axes with angular frequence $\omega$, the system $\mathcal{H}_{1,1}$ describes the Hill problem, i.e. a “limiting” motion of the Moon in the planar three body problem “Sun–Earth–Moon” with the masses $m_1\gg m_2>m_3=0$. Using the averaging method on a submanifold, we prove the existence of $\omega_0>0$ and a smooth family of $2\pi$-periodic solutions $\gamma_{\omega,\varepsilon}(t)= (\mathbf{q}_{\omega,\varepsilon}(t),\mathbf{p}_{\omega,\varepsilon}(t))$ to the system $\mathcal{H}_{\omega,\varepsilon}$, $|\varepsilon|\le1$, $|\omega|\le\omega_0$, such that $\gamma_{\omega,0}$ are cirlular solutions, $\gamma_{\omega,\varepsilon}=\gamma_{\omega,0}+O(\omega^2\varepsilon)$, and the “rescaled” motions $\tilde\gamma_{\omega,\varepsilon}(\tilde t):= (\omega^{2/3}\mathbf{q}_{\omega,\varepsilon}(\tilde t/\omega),\omega^{-1/3}\mathbf{p}_{\omega,\varepsilon}(\tilde t/\omega))$ for $0<|\omega|\le\omega_0$ and $\varepsilon=1$ form two families of Hill solutions, i.e., the initial segments of the known families $f$ and $g_+$ (with a reverse and direct directions of motion) of $2\pi\omega$-periodic solutions of the Hill problem $\mathcal{H}_{1,1}$. Using averaging, we prove that the sum of the multipliers of the Hill solution $\tilde\gamma_{\omega,1}$ has the form $\mathrm{Tr}(\tilde\gamma_{\omega,1})=4-(2\pi\omega)^2+(2\pi\omega)^3/(4\pi)+O(\omega^4)$. The results are developed and extended to a class of systems including the restricted three body problem, as well as applied to planetary systems with satellites.
Key words: three body problem, Hill problem, periodic solutions, averaging on a submanifold.
Received: 13.02.2013
English version:
Moscow University Mathematics Bulletin, 2015, Volume 70, Issue 4, Pages 160–170
DOI: https://doi.org/10.3103/S0027132215040026
Bibliographic databases:
Document Type: Article
UDC: 521.131, 517.925.42
Language: Russian
Citation: E. A. Kudryavtseva, “Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 4, 13–24; Moscow University Mathematics Bulletin, 70:4 (2015), 160–170
Citation in format AMSBIB
\Bibitem{Kud15}
\by E.~A.~Kudryavtseva
\paper Multipliers of periodic Hill solutions in the theory of moon motion and an averaging method
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2015
\issue 4
\pages 13--24
\mathnet{http://mi.mathnet.ru/vmumm246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3460066}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2015
\vol 70
\issue 4
\pages 160--170
\crossref{https://doi.org/10.3103/S0027132215040026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000218413200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940842871}
Linking options:
  • https://www.mathnet.ru/eng/vmumm246
  • https://www.mathnet.ru/eng/vmumm/y2015/i4/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:115
    Full-text PDF :37
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025