Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2015, Number 4, Pages 3–13 (Mi vmumm245)  

Mathematics

Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum

A. L. Vorob'ev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: New classes of functionals are proposed for an optimal stopping problem for a functional of a symmetric random walk and its maximum. For one class the optimal moment in a finite time interval is the beginning of this interval and for another one this is its end. These classes generalize those known previously. A proof of the optimality of the indicated moments is based on combinatorial analysis of random walk trajectories.
Key words: symmetric random walk, optimal stopping, “Buy-and-hold” rule.
Received: 28.02.2014
English version:
Moscow University Mathematics Bulletin, 2015, Volume 70, Issue 4, Pages 149–159
DOI: https://doi.org/10.3103/S0027132215040014
Bibliographic databases:
Document Type: Article
UDC: 519.216
Language: Russian
Citation: A. L. Vorob'ev, “Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 4, 3–13; Moscow University Mathematics Bulletin, 70:4 (2015), 149–159
Citation in format AMSBIB
\Bibitem{Vor15}
\by A.~L.~Vorob'ev
\paper Degeneracy condition for the optimal moment in the optimal stopping problem for a new functional of a symmetric random walk and its maximum
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2015
\issue 4
\pages 3--13
\mathnet{http://mi.mathnet.ru/vmumm245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3460065}
\elib{https://elibrary.ru/item.asp?id=25286650}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2015
\vol 70
\issue 4
\pages 149--159
\crossref{https://doi.org/10.3103/S0027132215040014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000218413200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940839505}
Linking options:
  • https://www.mathnet.ru/eng/vmumm245
  • https://www.mathnet.ru/eng/vmumm/y2015/i4/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025