Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 6, Pages 55–59 (Mi vmumm196)  

Short notes

Limit theorems for queueing systems with infinite number of servers and group arrival of requests

E. Chernsvakaya

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider an infinite-server queueing system where customers come by groups of random size at random i.d. intervals of time. The number of requests in a group and intervals between their arrivals can be dependent. We assume that service times have a regularly varying distribution with infinite mean. We obtain limit theorems for the number of customers in the system and prove limit theorems under approariate normalizations.
Key words: infinite-server queuing system, service times with heavy-tailed distribution, distribution of the number of customers in the system, regenerative flow.
Received: 13.04.2016
English version:
Moscow University Mathematics Bulletin, 2016, Volume 71, Issue 6, Pages 257–260
DOI: https://doi.org/10.3103/S0027132216060073
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: E. Chernsvakaya, “Limit theorems for queueing systems with infinite number of servers and group arrival of requests”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 6, 55–59; Moscow University Mathematics Bulletin, 71:6 (2016), 257–260
Citation in format AMSBIB
\Bibitem{Che16}
\by E.~Chernsvakaya
\paper Limit theorems for queueing systems with infinite number of servers and group arrival of requests
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 6
\pages 55--59
\mathnet{http://mi.mathnet.ru/vmumm196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637843}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 6
\pages 257--260
\crossref{https://doi.org/10.3103/S0027132216060073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393857000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008645148}
Linking options:
  • https://www.mathnet.ru/eng/vmumm196
  • https://www.mathnet.ru/eng/vmumm/y2016/i6/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:84
    Full-text PDF :37
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024