|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 6, Pages 8–16
(Mi vmumm188)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
Proper $\mathrm{T}$-ideals of Poisson algebras with extreme properties
S. M. Ratseev Ulyanovsk State University, Faculty of Mathematics and Information Technologies
Abstract:
Let $\{\gamma_n(\mathbf{V})\}_{n\ge1}$ be the sequence of proper codimensions of a variety $\mathbf{V}$ of Poisson algebras over a field of characteristic zero. A class of minimal varieties of Poisson algebras of polynomial growth of the sequence $\{\gamma_n(\mathbf{V})\}_{n\ge1}$ is presented, i.e. the sequence $\{\gamma_n(\mathbf{V})\}_{n\ge1}$ of any such variety $\mathbf{V}$ grows as a polynomial of some degree $k$, but the sequence $\{\gamma_n(\mathbf{W})\}_{n\ge1}$ of any proper subvariety $\mathbf{W}$ in $\mathbf{V}$ grows as a polynomial of degree strictly less than $k$.
Key words:
Poisson algebra, variety of algebras, growth of a variety.
Received: 27.06.2014
Citation:
S. M. Ratseev, “Proper $\mathrm{T}$-ideals of Poisson algebras with extreme properties”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 6, 8–16; Moscow University Mathematics Bulletin, 71:6 (2016), 224–232
Linking options:
https://www.mathnet.ru/eng/vmumm188 https://www.mathnet.ru/eng/vmumm/y2016/i6/p8
|
Statistics & downloads: |
Abstract page: | 118 | Full-text PDF : | 39 | References: | 30 |
|