Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 3, Pages 46–50 (Mi vmumm153)  

This article is cited in 9 scientific papers (total in 9 papers)

Short notes

The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral

V. A. Kibkalo

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (603 kB) Citations (9)
References:
Abstract: We study the topology of the space of the solutions closure for the integrable system on the Lie algebra $\mathrm{so}(4)$ that is an analogue of the Kovalevskaya case. For this purpose Fomenko–Zieschang invariants are calculated in the case of zero area integral, which classify isoenergetic $3$-surfaces and corresponding Liouville foliation on them.
Key words: integrable Hamiltonian system, Fomenko–Zieschang invariants, isoenergetic surface.
Received: 27.05.2015
English version:
Moscow University Mathematics Bulletin, 2016, Volume 71, Issue 3, Pages 119–123
DOI: https://doi.org/10.3103/S0027132216030074
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3, 46–50; Moscow University Mathematics Bulletin, 71:3 (2016), 119–123
Citation in format AMSBIB
\Bibitem{Kib16}
\by V.~A.~Kibkalo
\paper The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 3
\pages 46--50
\mathnet{http://mi.mathnet.ru/vmumm153}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637825}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 3
\pages 119--123
\crossref{https://doi.org/10.3103/S0027132216030074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980347857}
Linking options:
  • https://www.mathnet.ru/eng/vmumm153
  • https://www.mathnet.ru/eng/vmumm/y2016/i3/p46
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :60
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024