Loading [MathJax]/jax/output/SVG/config.js
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 3, Pages 46–50 (Mi vmumm153)  

This article is cited in 9 scientific papers (total in 9 papers)

Short notes

The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral

V. A. Kibkalo

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (603 kB) Citations (9)
References:
Abstract: We study the topology of the space of the solutions closure for the integrable system on the Lie algebra $\mathrm{so}(4)$ that is an analogue of the Kovalevskaya case. For this purpose Fomenko–Zieschang invariants are calculated in the case of zero area integral, which classify isoenergetic $3$-surfaces and corresponding Liouville foliation on them.
Key words: integrable Hamiltonian system, Fomenko–Zieschang invariants, isoenergetic surface.
Received: 27.05.2015
English version:
Moscow University Mathematics Bulletin, 2016, Volume 71, Issue 3, Pages 119–123
DOI: https://doi.org/10.3103/S0027132216030074
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3, 46–50; Moscow University Mathematics Bulletin, 71:3 (2016), 119–123
Citation in format AMSBIB
\Bibitem{Kib16}
\by V.~A.~Kibkalo
\paper The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 3
\pages 46--50
\mathnet{http://mi.mathnet.ru/vmumm153}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637825}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 3
\pages 119--123
\crossref{https://doi.org/10.3103/S0027132216030074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980347857}
Linking options:
  • https://www.mathnet.ru/eng/vmumm153
  • https://www.mathnet.ru/eng/vmumm/y2016/i3/p46
  • This publication is cited in the following 9 articles:
    1. G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A. T. Fomenko, V. V. Vedyushkina, “Billiards with Changing Geometry and Their Connection with the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317  crossref
    6. A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville Foliations of Topological Billiards with Slipping”, Russ. J. Math. Phys., 28:1 (2021), 37  crossref
    7. V. A. Kibkalo, A. T. Fomenko, I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82 (2021), 37–64  mathnet  mathnet  crossref  scopus
    8. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :78
    References:58
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025