Abstract:
We study the topology of the space of the solutions closure for the integrable system on the Lie algebra $\mathrm{so}(4)$ that is an analogue of the Kovalevskaya case. For this purpose Fomenko–Zieschang invariants are calculated in the case of zero area integral, which classify isoenergetic $3$-surfaces and corresponding Liouville foliation on them.
Citation:
V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 3, 46–50; Moscow University Mathematics Bulletin, 71:3 (2016), 119–123
\Bibitem{Kib16}
\by V.~A.~Kibkalo
\paper The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 3
\pages 46--50
\mathnet{http://mi.mathnet.ru/vmumm153}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637825}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 3
\pages 119--123
\crossref{https://doi.org/10.3103/S0027132216030074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84980347857}
Linking options:
https://www.mathnet.ru/eng/vmumm153
https://www.mathnet.ru/eng/vmumm/y2016/i3/p46
This publication is cited in the following 9 articles:
G. V. Belozerov, A. T. Fomenko, “Orbital invariants of billiards and linearly integrable geodesic flows”, Sb. Math., 215:5 (2024), 573–611
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160
A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979
A. T. Fomenko, V. V. Vedyushkina, “Billiards with Changing Geometry and Their Connection with the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317
A. T. Fomenko, V. V. Vedyushkina, V. N. Zav'yalov, “Liouville Foliations of Topological Billiards with Slipping”, Russ. J. Math. Phys., 28:1 (2021), 37
V. A. Kibkalo, A. T. Fomenko, I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82 (2021), 37–64
V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow University Mathematics Bulletin, 74:3 (2019), 98–107