Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 2, Pages 51–52 (Mi vmumm138)  

Short notes

Complexity of linear and majority functions in the basis of antichain functions

O. V. Podolskaya

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The complexity circuits of Boolean functions is studied in a basis consisting of all characteristic functions of antichains over the Boolean cube. It is established that the circuit complexity of an $n$-variable parity function is $\left\lfloor \frac{n+1}{2}\right\rfloor$ and the complexity of its negation equals the complexity of the $n$-variable majority function which is $\left\lceil \frac{n+1}{2} \right\rceil$.
Key words: antichain function, circuit complexity, parity function, majority function.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00598
Received: 25.05.2015
English version:
Moscow University Mathematics Bulletin, 2016, Volume 71, Issue 2, Pages 82–83
DOI: https://doi.org/10.3103/S002713221602008X
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: O. V. Podolskaya, “Complexity of linear and majority functions in the basis of antichain functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 2, 51–52; Moscow University Mathematics Bulletin, 71:2 (2016), 82–83
Citation in format AMSBIB
\Bibitem{Pod16}
\by O.~V.~Podolskaya
\paper Complexity of linear and majority functions in the basis of antichain functions
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 2
\pages 51--52
\mathnet{http://mi.mathnet.ru/vmumm138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637817}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 2
\pages 82--83
\crossref{https://doi.org/10.3103/S002713221602008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971301647}
Linking options:
  • https://www.mathnet.ru/eng/vmumm138
  • https://www.mathnet.ru/eng/vmumm/y2016/i2/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :34
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024