Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 2, Pages 18–24 (Mi vmumm131)  

Mathematics

The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property

V. V. Galatenko, T. P. Lukashenko, V. A. Sadovnichii

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The almost everywhere convergence condition similar to the Menchoff–Rademacher condition is obtained for functional series with some weak analogue of the orthogonality property. As a corollary, the results of almost everywhere convergence of series with respect to Riesz systems, Hilbert and Bessel systems, and frames are obtained.
Key words: almost everywhere convergence, Menchoff–Rademacher condition, Riesz systems, Hilbert systems, Bessel systems, frames.
Received: 25.09.2015
English version:
Moscow University Mathematics Bulletin, 2016, Volume 71, Issue 2, Pages 61–67
DOI: https://doi.org/10.3103/S0027132216020030
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: V. V. Galatenko, T. P. Lukashenko, V. A. Sadovnichii, “The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 2, 18–24; Moscow University Mathematics Bulletin, 71:2 (2016), 61–67
Citation in format AMSBIB
\Bibitem{GalLukSad16}
\by V.~V.~Galatenko, T.~P.~Lukashenko, V.~A.~Sadovnichii
\paper The condition of almost everywhere convergence for a functional series with a weak analogue of the orthonormality property
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 2
\pages 18--24
\mathnet{http://mi.mathnet.ru/vmumm131}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637812}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 2
\pages 61--67
\crossref{https://doi.org/10.3103/S0027132216020030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971249400}
Linking options:
  • https://www.mathnet.ru/eng/vmumm131
  • https://www.mathnet.ru/eng/vmumm/y2016/i2/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :62
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024