|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 1, Pages 60–61
(Mi vmumm125)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Short notes
Complete rational arithmetic sums
V. N. Chubarikov Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Let $q>1$ be an integer, $f(x)=a_nx^n+\ldots +a_1x+a_0$ be a polynomial with the integer coefficients, and $(a_n,\ldots ,a_1,q)=1.$ Then is valid the estimation $$\left|S\left(\frac{f(x)}{q}\right)\right|=\left|\sum_{x=1}^q\rho\left(\frac{f(x)}q\right)\right|\ll q^{1-1/n}, $$ where $\rho(t)=0,5-\{t\}.$
Key words:
“the saw-tooth” function, the Bernuolli's polynomials, the complete rational arithmetical sums.
Received: 27.03.2015
Citation:
V. N. Chubarikov, “Complete rational arithmetic sums”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1, 60–61; Moscow University Mathematics Bulletin, 71:1 (2016), 43–44
Linking options:
https://www.mathnet.ru/eng/vmumm125 https://www.mathnet.ru/eng/vmumm/y2016/i1/p60
|
Statistics & downloads: |
Abstract page: | 173 | Full-text PDF : | 48 | References: | 46 |
|