Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 1, Pages 40–44 (Mi vmumm120)  

This article is cited in 3 scientific papers (total in 3 papers)

Short notes

The Bertrand’s manifolds with equators

E. A. Kudryavtseva, D. A. Fedoseev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (318 kB) Citations (3)
References:
Abstract: Natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential are studied in the paper. A complete classification of such Riemannian manifolds and potentials on them possessing the strengthened Bertrand property, i.e., any orbit not contained in any meridian is closed, is obtained.
Key words: Bertrand's Riemannian manifold, surface of revolution, equator, Tannery's manifold, the Maupertuis principle.
Received: 24.06.2014
English version:
Moscow University Mathematics Bulletin, 2016, Volume 71, Issue 1, Pages 23–26
DOI: https://doi.org/10.3103/S0027132216010046
Bibliographic databases:
Document Type: Article
UDC: 514.853
Language: Russian
Citation: E. A. Kudryavtseva, D. A. Fedoseev, “The Bertrand’s manifolds with equators”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1, 40–44; Moscow University Mathematics Bulletin, 71:1 (2016), 23–26
Citation in format AMSBIB
\Bibitem{KudFed16}
\by E.~A.~Kudryavtseva, D.~A.~Fedoseev
\paper The Bertrand’s manifolds with equators
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 1
\pages 40--44
\mathnet{http://mi.mathnet.ru/vmumm120}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637804}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 1
\pages 23--26
\crossref{https://doi.org/10.3103/S0027132216010046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962844522}
Linking options:
  • https://www.mathnet.ru/eng/vmumm120
  • https://www.mathnet.ru/eng/vmumm/y2016/i1/p40
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :51
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024