Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2016, Number 1, Pages 3–9 (Mi vmumm115)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Isometric embeddings of finite metric spaces

A. I. Oblakova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (341 kB) Citations (1)
References:
Abstract: It is proved that there exists a metric on the Cantor set such that any finite metric space with the diameter not exceeding 1 and the number of points not exceeding $n$ can be isometrically embedded into it. We also prove that for any $m,n \in \mathbb N$ there exists a Cantor set in $\mathbb R^m$ that isometrically contains all finite metric spaces embedded into $\mathbb R^m$, containing not more than $n$ points, and having the diameter not exceeding $1$. The latter result is proved for a wide class of metrics on $\mathbb R^m$ and in particular for the Euclidean metric.
Key words: metric, isometric embedding, Cantor set.
Received: 12.12.2013
English version:
Moscow University Mathematics Bulletin, 2016, Volume 71, Issue 1, Pages 1–6
DOI: https://doi.org/10.3103/S0027132216010010
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: A. I. Oblakova, “Isometric embeddings of finite metric spaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1, 3–9; Moscow University Mathematics Bulletin, 71:1 (2016), 1–6
Citation in format AMSBIB
\Bibitem{Obl16}
\by A.~I.~Oblakova
\paper Isometric embeddings of finite metric spaces
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2016
\issue 1
\pages 3--9
\mathnet{http://mi.mathnet.ru/vmumm115}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3637801}
\elib{https://elibrary.ru/item.asp?id=28147127}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2016
\vol 71
\issue 1
\pages 1--6
\crossref{https://doi.org/10.3103/S0027132216010010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393855300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962855740}
Linking options:
  • https://www.mathnet.ru/eng/vmumm115
  • https://www.mathnet.ru/eng/vmumm/y2016/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024