Numerical methods and programming
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Num. Meth. Prog.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Numerical methods and programming, 2019, Volume 20, Issue 2, Pages 147–169
DOI: https://doi.org/10.26089/NumMet.v20r215
(Mi vmp956)
 

Numerical methods for black box software

S. I. Martynenko

Central Institute of Aviation Motors, State Scientific Center of Russian Federation, Moscow
Abstract: A number of requirements are formulated to the numerical algorithms for black box software intended for mathematical modeling in continuum mechanics. An analysis of applied properties of the classical multigrid methods and robust multigrid technique in the framework of “robustness-efficiency-parallelism” problem is performed. It is shown that a close-to-optimal complexity with the least number of problem-dependent components and high parallel efficiency can be achieved with the robust multigrid technique on globally structured grids. Application of unstructured grids requires the accurate definition of two problem-dependent components (intergrid operators) that strongly affect on the complexity of an algorithm.
Keywords: parallel and high performance computing, boundary value problems, multigrid methods, black box software.
Received: 14.04.2019
Bibliographic databases:
UDC: 519.63; 004.272.26
Language: Russian
Citation: S. I. Martynenko, “Numerical methods for black box software”, Num. Meth. Prog., 20:2 (2019), 147–169
Citation in format AMSBIB
\Bibitem{Mar19}
\by S.~I.~Martynenko
\paper Numerical methods for black box software
\jour Num. Meth. Prog.
\yr 2019
\vol 20
\issue 2
\pages 147--169
\mathnet{http://mi.mathnet.ru/vmp956}
\crossref{https://doi.org/10.26089/NumMet.v20r215}
\elib{https://elibrary.ru/item.asp?id=38239265}
Linking options:
  • https://www.mathnet.ru/eng/vmp956
  • https://www.mathnet.ru/eng/vmp/v20/i2/p147
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Numerical methods and programming
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :170
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024